$\label{eq:Appendix} \textbf{A} \ \textbf{—} \ \textbf{Glossary} \ \textbf{and} \ \textbf{fundamental} \ \textbf{notations}$

Name	Symbol	Description
Relational coexistence	Ω_{ij}	Coexistence function between original entities e'_i and e'_j in R' , with $0 \le \Omega_{ij} \le 1$. In R it manifests as a degree of observable correlation.
Relational entropy	$S_{ m rel}$	Defined as $S_{\rm rel} \propto -\sum_{i < j} \Delta \Omega_{ij}$. Increases when coexistences lose specificity; it is the cause of the original symmetry breaking, cosmic expansion, the arrow of time, and decoherence.
Relational temperature	$T_{ m rel}$	Proportional to the sum of oscillations (in frequency and amplitude) of the coexistences Ω_{ij} . At $T_{\rm rel}=0$ absolute entanglement is achieved.
Total relational coherence	$C_{\rm rel}^{(e)}$	Sum of the coexistences $\Omega_{e'i}(\tau)$ between the actualized entity e and all the other entities connected to it in R' . Measures the degree of relational integration of e .
Relational reduction factor (lapse)	$\gamma_{ m rel}(z)$	Parametrizes in R the combined reduction due to entropic variation and the lower creation of relational time; typically $\gamma_{\rm rel}(z) < 1$. Drives the observed expansion rate.
Arrow of time	_	Emergent direction defined by the growth of $S_{\rm rel}$. Under perfect coherence $(\Omega_{ij} \to 1)$ the arrow halts.
Quantum decoherence	_	Loss of relational specificity ($\Delta\Omega_{ij} < 0$) and thus increase of $S_{\rm rel}$; beyond a critical coherence threshold $C_{\rm rel}^{(e)}$, the system cannot maintain superpositions and actualizes an outcome through Π .
Cosmic expansion	_	Manifestation in R of the progressive relational degradation in R' . A structural and irreversible phenomenon in TCR dynamics.
Gravity	_	Emergent effect of gradients in Ω_{ij} ; in TCR it acts as an anti-entropic force that can locally restore maximum coexistence (e.g. in black holes).
Principle of Relational Indifferentiation	_	Postulate according to which, on average, coexistences in R' tend to lose specificity $(d\Omega_{ij}/d\tau < 0)$, causing the increase of $S_{\rm rel}$.
Entanglement	_	Limiting case of perfect coexistence ($\Omega_{ij} = 1$): in R it manifests as ideal quantum correlation, independent of distance.
Black holes	_	Systems in which gravity locally overcomes entropy, restoring relational coherence: initially the creation of new space-time units halts; in the limit $\Omega \rightarrow 1$ time comes to a stop.
Spatiotemporal distance	d_R	Distance between two actualized entities in R , measured according to the spatiotemporal metrics of the actualized reality.
Observed expansion rate	$H_{ m obs}(z)$	Effective rate in R resulting from the action of the relational lapse $\gamma_{\rm rel}(z)$ on the "bare" dynamics; it is the quantity compared with CC/BAO/SN.
Voids (bimodal)	_	Two phenomenological families of voids ("deep"/"shallow") that determine the effective volumetric fraction and contribute to the shape of $\gamma_{\rm rel}(z)$ in the low-redshift regime.
Dynamic mix of voids	_	Combination (possibly sigmoidal in z) of the two void families that controls the transition and the evolution of $\gamma_{\rm rel}(z)$ and the effective curvature.
"Bare" vs observed	_	Distinction between average (bare) geometric quantities and measured (observed) quantities after the relational lapse; crucial to interpret apparent acceleration without dark components.
Model "normalization"	_	Implementation constraint that ensures consistency between r_s computed at early-time, comoving distances, and compressed BAO vectors without free rescaling factors.
"Effective curvature"	_	Average curvature induced by the void/wall mix that acts phenomenologically together with $\gamma_{\rm rel}(z)$ in determining observable distances.

Name	Symbol	Description
"Mass transfer" in walls	_	Migration of matter from void regions to walls that modulates the average geometry over time and therefore the shape of $\gamma_{\rm rel}(z)$.
"Derivative of the lapse"	$\gamma'(z)$	Numerical derivative (centered differences) used in stability evaluations and in model transitions; relevant for constructing $H_{\rm obs}(z)$.
"TCR set" of parameters	_	Collection of phenomenological parameters (e.g. $A, p, z_t^{\text{mix}}, \beta_{\text{mix}}, H_0, \Omega_m$) specifying the shape of $\gamma_{\text{rel}}(z)$ and the associated observables.
"Observational pipeline"	_	Operational sequence: computation of r_s and θ_* (if used), definition of the TCR set, construction of $\gamma(z)$, evaluation of $H_{\rm obs}(z)$, distances and BAO vectors, then total χ^2 with SN/CC/BAO.
"CMB prior on θ_* "	$100 heta_*$	Optional constraint on the characteristic CMB angle (if enabled), computed with the early-time branch consistent with the model; not used in the main runs of the <i>Results</i> section.
"Sound horizon"	r_s	Primordial acoustic scale computed by integrating c_s/H in the selected early-time regime (without free rescalings); sets the normalization of compressed BAO.
"Early reference"	$r_s^{ m ref}$	Reference value of r_s for the internal comparison between TCR and Λ CDM (same pipeline, common normalization rules).

Table 1: Glossary of fundamental TCR terms.